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The IEA’s 2050 Scenarios....
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The Impact of the Paris Accord
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The IEA’s 2050 Scenarios....
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Emissions Reductions: Where does CCUS fit in?

* 9% of emissions
reductions by 2050

Annual

5 + >100 Gt of CO,
s captured and stored
by 2050
« ~2000 CCUS facilities
by 2050
- | 15%CCUs
-40
2019 2030 2040 2050 2060 2070
m Avoided demand Technology performance Electnfication m Hydrogen
m Bioenergy m Other renewables m Other fuel shifts CCUS

Source: IEA 2020, Sustainable Development Scenario (SDS)
S

Stanford | Doerr | Stanford Center 3
School of Sustainability | for Carbon Storage



How Does CCS Work?

s

3
|

Capture Storage

« CO2is generated as a « CO, is transported to a storage « CO,isinjected into
: location (via barge, pipeline, ralil underground geologic
byproduct of production or truck) formations at depths of 4000+
processes and vented to the _ _ feet
atmosphere « Selection of transportation
mode depends on CO, « Geologic formations can
 Equipment can be installed volumes, available include saline reservoirs or oil
to separate, purify and liquify infrastructure, environmental and gas fields (depleted or still
the CO ’ and economic impacts under production)
2
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Carbon Capture at a Glance
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Transport Options for CO,
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Basic Concept of Geological Storage of CO,

. CO, injected at high pressure at depths of about 1 mile or
deeper into rocks with tiny pore spaces

. Trapping beneath seals of low permeability rocks

Injection stops

homogeneo
reservoir

- ~1 - 10 KM —>
-

Stanford | Doerr | Stanford Center 1 2
School of Sustainability | for Carbon Storage




Geologic Trapping Mechanisms for CO2

Structural Trapping Residual Trapping Dissolution Trapping Mineral Trapping

100
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Source: Global CCS Institute, 2021
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Health, Safety and Environmental Risks

1. Groundwater quality
degradation doop. Sasl uatiod 1ve

Abandoned Shallow
well groundwater
Accumulation in well
topographic Off gas from well :
depression o 9 | Accumulation
l = = in basement

direct
to air W
AN\
- C - \‘|
‘ """"" CO2 o

2. Induced seismicity

_ o y

3 | ERiiiusiom s

3. Release to atmosphere
(via wells, faults, and
other pathways)

COg2 plume

plume

COx dissolve

- EpA i
in groundwate%
AnAnD

COa.in low
permeability environment x;_,:r

Annular
flow

Casing
corrosion

Regulations and proper
management can mitigate R T 2 S

Stanford Doerr|Stanford Center
School of Sustainability | for Carbon Storage 1 7



CCS Facilities Around the World (2022)
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CCS Facilities Around the World (2022)

EARLY DEVELOPMENT @& ADVANCED DEVELOPMENT @ IN CONSTRUCTION
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California Historic Emissions and Future Targets

a0
o
o

2030 Goal:

40% Reduction from
1990 Emissions
Level
256.2 Mt CO.e

300
200 2045 Goal:

Carbon Neutrality & Net-

Negative Emissions
100 Thereafter

o DRRRRRRRRRRRRRRRRRREND

2000 2005 2010 2015 2020 2025 2030 2035 2040

N
o
o

Greenhouse Gas Emissions (MtCO,e)

2045

mm Agriculture and Forestry Buildings
== Transportation mi Industry
mm Electricity
IS TR
Stanford C
§}r%g£?§gtaegb?lg f(;c?anrrboneSntE)er;ge 21



California Industrial and Electricity Sector Emissions

Source: Energy
Futures Initiative
and Stanford
University, 2020.
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California Industrial and Electricity Sector Emissions

Electricity Sector:

* Built after 2000

« Combined Cycle -
* No planned retirement

« 25 candidate sites
* 14 GW total capacity
21.6 Mt CO2/yr current

Emission Sources

[ ..
Cement (8) . emissions

° Capacity > 250 MW « 27.5 capturable
CHP (13) emissions Mt CO2/yr
Ethanol (3)

®Hydrogen SMRs(16)
®Refineries (9)

ANGCC power plants(25)

Industrial Sector: - « 51 facilities
« >100,000 t/yr CO2e « 35.8 Mt CO2/yr current

emissions
« 31.8 Mt CO2 /yr
capturable emissions

Source: Energy
Futures Initiative Total Capturable Emissions: 59 Mt/yr
and Stanford Total Sites: 76

University, 2020.
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Comparison of Emissions and Capture Costs

Average Emissions for Average Cost for Capture for
Different CO, Capture Sources Different CO, Sources
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S/t CO,
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Geologic Storage Opportunities

5,000 ft

10,000 ft

2,000 ft

Total # O&G (503) and UGS
sites (13): 516

Total capacity (NATCARB) of
0O&G/UGS: 3.6 - 6.6 Gt CO,

4,000 ft

Source: Energy
Futures Initiative
and Stanford
University, 2020.
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Geologic Storage Opportunities

Total # O&G (120) and UGS
sites (9): 129

Total capacity of O&G/UGS:
2.9 -5.3 Gt CO,

Qualifying Criteria:

« Storage capacity > 3Mt CO2
Depth > 800 m
Permeability > 10 mD
Porosity > 10%
Reservoir Thickness >3 m
Sufficient Injectivity

Source: Energy
Futures Initiative
and Stanford
University, 2020.
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Geologic Storage Opportunities

Total capacity of Saline
Storage: 116 Gt CO,

Source: Energy
Futures Initiative
and Stanford
University, 2020.
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Exclusion Zone
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Exclusion Zone

Source: Energy
Futures Initiative
and Stanford
University, 2020.
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Seismic activity

* 10 km diameter
buffer zone for
M>5

* 5km diameter
buffer zone for
M<5

30




Exclusion Zone

High Population density

* Above 75 persons/
km?

Source: Energy
Futures Initiative
and Stanford
University, 2020.
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Exclusion Zone

Land issues
* restricted lands
* sensitive habitats

Source: Energy
Futures Initiative
and Stanford
University, 2020.
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Exclusion Zone

Source: Energy
Futures Initiative
and Stanford
University, 2020.
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Exclusion Zone

Source: Energy
Futures Initiative
and Stanford
University, 2020.
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CO2 Storage Opportunities

- ' |storage Capacity (GT CO,)

Saline Formations 70
QOil and Gas Low High

1.1 2.1

Source: Energy
Futures Initiative
and Stanford
University, 2020.
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CO2 Emissions Sources and Storage Opportunities

Source: Energy
Futures Initiative
and Stanford
University, 2020.
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Infrastructure Buildout for 60 Mt CO,e/year

Co-located capture 3 ethanol plants, 6 NGCC, 6
and storage CHPs and 1 cement plant

= Emissions Sources

Notional CO2
Pipeline 1. Northern California [ N

[] Potential Geologic Gathering System (8:|r—1|)|;d roge(;‘ :;]' l(le(;'g%'m& <
Storage and Storage Hub S, an

2. Southern California : :
omiptpentiag) « 8 hydrogen, S refineries, 4

/%TJ and Storage Hub CHPs, 1 cement, and 5 NGCC
L 3. Desert and Salton

: Sea Gathering 5 cement, 1 CHP, 6 NGCC

Systems
' \O\ 4. Central California
o " = and S. Bay Gathering
NN S X System

1 cement, 5 NGCC

Source: Energy Futures Initiative and Stanford University, 2020. 37



Incentives

45Q — Enhanced by IRA Low Carbon Fuel Standard (LCFS)

California’s LCFS establishes a credit
market for transportation fuels in which
parties earn credits for producing
cleaner fuels that are below the annual
carbon intensity threshold.

« CCS projects that are associated with
cleaner transportation fuels are in

 US Federal Tax linked to the installation °
and use of carbon capture equipment
that directly removes CO2 from the
atmosphere

— $85/ton for geologic storage
— $60/ton for EOR or if used in

products S coD6
» Facilities must begin construction by P . . ..
Jan 1, 2033 * The credit applies to fuel of any origin

that is ultimately sold in CA
« Credits bought and sold privately
 Current credit price ~ $70/ton CO,

Stanford Doerr ‘ Stanford Center
School of Sustainability | for Carbon Storage

« Credit lasts for 12 years
 Minimum size requirements



Challenges for CCS in California

Ambiguous
Position of the

Lack of Public
Awareness and

Revenue and Cost
Uncertainty

Complex & Untested

Regulatory Process for
State on the

Future Role of CCS

Discourage Project
Finance

Support for
CCS

Getting Permits for

Numerous Regulatory Revenue Challenge: LCFS

CCCIC’ Ineéligible g Jurisdictions & Unclear Credit Market Concern that CCS
Under Cap-and- CEQA Lead for Industry CCS Uncertainty and Policy Allows f_or Continued
Trade : Rick Fossil Fuel Use
Unclear E|Ig|bl|lty of CCS ) . Revenue Cha"enge: Low Public Awareness
for SB100 _Ze_ro-Carbon Uncerta.]ll.?nf;mqelgtmg Limitations of the Federal and Varied Opinions of
Electricity Target 45Q Tax Credit Design CCS
CCSis Not Included State and Federal Post- Cost Challenge: Aligning Historic Inequities in
in Other State Injection Site Care Players, Permitting, and Energy Infrastructure
Energy Planning Requirements Vary Financing Siting
Source: Energy Inadequate Legal Cost Challe*ge .F.inanCial
Futures Initiative Framework for Obtaining Responsibility
and Stanford Pore Space Rights Associated with UIC

University, 2020.
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Recent Developments

SB 905:

* Requires the California Air Resources Board (CARB) to establish a CCS
and Carbon Removal program for the state

 Clarifies that pore space is vested with the surface owner, unless
previously severed.

« Monitoring and reporting requirements for CO,, storage operators.

* Reporting requirements of any leakage or seismic activity.
 Prohibition against using CO, for enhanced oil recovery.

Targets set by Newsom & implemented in CARB Scoping Plan 2022:

2030 13 Mt 7 Mt 20 Mt
2045 25 Mt 75 Mt 100 Mt

Stanford | Doerr | Stanford Center
School of Sustainability ‘fOI’ Carbon Storage 40



Challenges for CCS in California

Anmhigrous
Posit. of the

Lack of Public
Awareness and

Support for
CCS

Revenue and Cost
Uncertainty

Complex & Untested
Regulatory Process for

Stc -« the Getting Permits for

Future Role of CCS

Discourage Project
Finance

- Numer latory Revenue Challenge: LCFS
UCCdS Ingllglf)led_ Jurisdict Unclear Credit Market IIConc].;ern tha’F CCs
nder Cap-an CEQA Lea stry CCS Uncertainty and Policy Allows or Continued
Trade Rick Fossil Fuel Use
for SB100 _Ze_ro-Carbon Uncerta_ll_?ni;irrr:;lgtmg Limitations of the Federal and Varied Opinions of
Electricity Target 45Q Tax Credit Design CCS

CCSi luded State and Federal Post- Cost Challenge: Aligning Historic Inequities in

in ate Injection Site Care Players, Permitting, and Energy Infrastructure

Ene ning Requirements Vary Financing Siting

.

Inad*gal
Framewor] btaining
Addressed by SB 905 & Pore ohts

Governor Newsom

Cost Challe*ge: Financial
Responsibility
Associated with UIC

Stanford | Doerr | Stanford Center
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Current Status of CCS in CA

Carbon TerraVault |, LLC: CTV Elk Hills A1-A2

San Joaquin Renewables, LLC: San Joaquin Renewables

Carbon TerraVault |, LLC: Elk Hills 26R

Carbon TerraVault Holdings, LLC: CTV Il

Carbon TerraVault Holdings, LLC: CTV Il

Aera Energy, LLC: CarbonFrontier

Pelican Renewables, LLC: Pelican

Carbon TerraVault Holdings, LLC: CTV IV}

Montezuma NorCal Carbon Sequestration Hub: Montezuma Carbon LLC |
Calpine California CCUS Holdings: Sutter Decarbonization Project

Carbon Terravault Holdings, LLC: CTVV X 2
Chevron U.S.A,, Inc.: Kern River Eastridge CCS
T Jan-21 Jan-22 Jan-23 Jan-24 Jan-25 Jan-26

=33 Completeness Review B Technical Review** B Prepare Draft Permit I public Comment Period B Prepare Final Permit Dec
fest. 30 days) (est. 18 months) {est. 60 days) {est. 30-45 days) (est. 90 days)

© Notice of Deficiency (NOD) Sent A Request for Additional Information (RAI) Sent Applicant response time to NODs and RAls

« EPA Class VI well permit required to inject CO2
« 12 CA projects in queue with the EPA
* Current review period 2-3 years
*CA CCS projects in the EPA queue
I e rbon Siorae 42



California Historic Emissions and Future Targets

We can get there, but it will require:
* Tripling the amount of installed solar
« Building 20 GW of offshore wind

* Electrifying 20 Million cars
Reducing fossil fuel consumption
(liquid petroleum) to less than one-
tenth of what we use today
200 25 Mt/yr of CCS by 2045
75 Mt of Carbon Dioxide Removal

a0
o
o

N
o
o

(BECCS & DAC)
100

Greenhouse Gas Emissions (MtCO,e)
()
o
o

o DRRRRRRRRRRRRRRRRRREND

2000 2005 2010 2015 2020 2025 2030 2035 2040

2045

mu Agriculture and Forestry Buildings
== Transportation mi Industry
mm Electricity
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Carbon Dioxide Removal (CDR)

What is CDR?

« Technologies that remove CO,
from the atmosphere.

 |n 2045, CARB Scoping Plan
requires:

« Direct air capture (DAC) w/
geologic storage ~65 Mt

« Biomass carbon removal
(BECCS/BICRS) ~9 Mt

 Natural climate solutions
from working lands ~1 Mt

Stanford Doerr|Stanford Center
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Direct Air Capture (DAC)

- Extraction of CO, directly from the atmosphere.
« S-DAC: solid adsorbent (low P, 80-120 C)
« L-DAC: aqueous solution at high T (300-900 C)
» Energy intensive due to low concentration of CO,

* Current Status: 18 DAC plants operating capturing 0.01 Mt/yr.
Majority of captured CO, is used in beverage industry

A1 Mt/lyr plant is in development in TX and 11 more large-scale
plants are in development which could result in 5.5 Mt/yr by 2030

* |EA Net Zero scenario (for the globe) requires 5.5 Mt/yr by 2030
 CARB 2022 Scoping Plan (for CA) requires:

« 2.3 Mt/lyr by 2030

« 6.6 Mt/yr by 2031

Stanford | Doerr | Stanford Center
School of Sustainability | for Carbon Storage 45
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